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Solutes unmask differences in clustering
versus phase separation of FET proteins

Mrityunjoy Kar 1, Laura T. Vogel 2,5, Gaurav Chauhan 3,5, Suren Felekyan 2,
Hannes Ausserwöger 4, Timothy J. Welsh 4, Furqan Dar3, Anjana R. Kamath1,
Tuomas P. J. Knowles 4, Anthony A. Hyman 1 , Claus A. M. Seidel 2 &
Rohit V. Pappu 3

Phase separation and percolation contribute to phase transitions of multi-
valent macromolecules. Contributions of percolation are evident through the
viscoelasticity of condensates and through the formation of heterogeneous
distributions of nano- andmesoscale pre-percolation clusters in sub-saturated
solutions.Here,we show that clusters formed in sub-saturated solutions of FET
(FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus
chloride. These differences on the nanoscale, gleaned using a suite ofmethods
deployed across a wide range of protein concentrations, are prevalent and can
be unmasked even though the driving forces for phase separation remain
unchanged in glutamate versus chloride. Strikingly, differences in anion-
mediated interactions that drive clustering saturate on the micron-scale.
Beyond this length scale the system separates into coexisting phases. Overall,
we find that sequence-encoded interactions, mediated by solution compo-
nents, make synergistic and distinct contributions to the formation of pre-
percolation clusters in sub-saturated solutions, and to the driving forces for
phase separation.

Macromolecular condensation contributes to spatial, temporal, and
functional organization of cellular matter1–4. As a composite process,
condensation combines reversible binding, oligomerization, and
coupled phase transitions such as percolation and phase separation or
electrostatically-driven complex coacervation2,5–15. The physical
chemistry of condensation has been studied extensively for FET family
proteins16. These include the FET proteins FUS (Fused in Sarcoma),
EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein
1), and TAF15 (TATA-Box Binding Protein Associated Factor 15)17. FET
proteins feature at least one RNA recognition motif (RRM), an intrin-
sically disordered arginine-rich RNA binding domain (RBD), and a
prion-like low complexity domain (PLCD).

In vitro, in the presence of 150mM KCl and at a pH of ~7.2, FET
proteins purified from insect cells undergo phase separation above

sequence-specific saturation concentrations (csat)16. The values of csat
decrease with decreasing concentrations of KCl18. The sequence-
dependencies ofmeasured csat values have been rationalized using the
framework of linear associative polymers19, which can be used to parse
the sequences of FET proteins into stickers versus spacers16,20–24.
Stickers engage in specific interactions, and they form reversible
interactions with one another. Spacers engage in weaker attractions,
but they influence macromolecular solubility through effective solva-
tion volumes also known as excluded volumes6,23,25. Spacer contribu-
tions to macromolecular solubility influence the balance of spacer-
spacer, spacer-sticker, and spacer-solvent interactions26–28. Spacers
also modulate the cooperativity of sticker-sticker interactions6,23.

Phase transitions of associative macromolecules combine phase
separation and percolation5,29. The latter is also known as
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thermoreversible gelation19,20,30,31. The solubility limits of macro-
molecules, influenced by solvent-mediated intermolecular interac-
tions of spacers and stickers, will lead to the separation of a
macromolecular solution into coexisting dense and dilute phases32,33.
Equalization of chemical potentials and osmotic pressure34,35 deter-
mine macromolecular concentrations in dense and dilute phases, and
we designate these as cden and csat, respectively.

Multivalence, defined by the numbers of stickers of different
types, will enable the networking of associative macromolecules
through the formation of clusters that grow continuously with
increasing numbers of molecules being incorporated into networks
as concentrations increase5,20,23,36. These continuous transitions are
defined by a percolation threshold (cperc) above which a system-
spanning network forms5,31,36–38. As clusters grow, their sizes will
influence solubility39. This is because the overall solubility is gov-
erned by a combination of the sizes and physicochemical properties
of clusters that form via intermolecular associations36. For associa-
tive macromolecules that undergo phase separation, it follows that
csat < cperc < cden5,6,20,21. As a result, associative macromolecules fea-
turing hierarchies of interactions undergo phase separation and
percolation, and the dense phase is a physically crosslinked network
that spans the condensate instead of the system5,28,40. This gives
condensates an underlying network-like structure, which will be
governed by the architectures and conformational heterogeneity of
the underlying molecules. The upshot is that condensates are vis-
coelastic materials with sequence-specific viscoelastic moduli
because the percolated network spans the dense phase41. Gelation or
percolation sans phase separation will occur if cperc < csat6. Contrary
to recent assertions42, stickers alone do not determine the driving
forces for phase transitions, although cperc correlates positively
with csat16,21–23. Instead, stickers determine the percolation threshold,
spacers set the solubility limit, and synergies between stickers
and spacers determine the overall phase diagram and material
properties via the coupling between phase separation and
percolation5,6,25,28,30,36,41,43,44.

Distinct hierarchies of interactions that enable the classification of
residues or motifs as stickers versus spacers enables the mapping of
different linear heteropolymers onto linear associative polymers.
These include the intrinsically disordered RGG domains of DDX4 and
LAF-145–47, full-length FET proteins16, their RBDs and PLCDs26–28,43,48, the
condensate driving domains of chromatin remodeling complexes49,
the stress granule protein UBQLN250, unfolded states of intrinsically
foldable domains24, and even RNA molecules51.

A direct upshot of the coupling of phase separation and perco-
lation is the presence of pre-percolation clusters in sub-saturated
solutions5,36,44. Theory predicts that clusters grow continuously in size
and abundance with increasing concentration36,44. Here, sizes are
defined by the numbers of molecules within clusters (Fig. 1)5,36 The
distributions of cluster sizes in sub-saturated solutions will likely be
heavy-tailed5,52 (Fig. 1). This leads to a finite likelihood of forming
mesoscale species, hundreds of nanometers in diameter, although
their overall abundance will be low. The presence of mesoscale clus-
ters, realized via continuous evolution of cluster sizes in sub-saturated
solutions, contributes to saturating the soluble phase, thus determin-
ing csat. In accord with these expectations, recent studies, which
deployed a diverse suite of measurements across a wide range of
concentrations, showed that FET family proteins form heterogeneous
distributions of pre-percolation clusters in sub-saturated solutions52. It
was also shown that systems defined by weak clustering in sub-
saturated solutions are also characterized by larger csat values52. Above
csat, condensate formation of FET proteins is driven by the separation
of large and small species via cluster-cluster coalescence and the net-
working of mesoscopic clusters that form in sub-saturated solutions52.
It is worth noting that using only one type of method such as fluor-
escence correlation spectroscopy (FCS)will fail to uncover the entirety
of the cluster size distribution53. The duality of low diffusivities due to
increased size and low abundance of larger clusters makes it difficult
for purely FCS-based methods to detect all species present in sub-
saturated solutions.

Several mutations within FET proteins were found to affect clus-
tering and phase separation equivalently. However, separability of
interactions was also demonstrated by the effects of solutes that dis-
solve condensates without influencing clustering in sub-saturated
solutions52. Conversely, certain mutations can impact clustering, while
having a minimal impact on phase separation, especially if csat is
already low. The recent study of Lan et al. reported findings for
Negative Elongation Factor that support the separation of interactions
that determine sub-saturated solution clusters versus condensation in
live cells54. These observations suggest that clustering and phase
separation can be governed by separable energy scales. Here, we
investigated whether changing the solution anion from chloride to
glutamatewould have separable effects on the driving forces for phase
separation versus clustering in sub-saturated solutions.

Our choice of comparing the effects of chloride versus glutamate
on clustering versus phase separation was motivated by two con-
siderations. First, glutamate tends to drive protein-protein
associations55,56. Hence, we reasoned that glutamate should enhance
clustering in sub-saturated solutions. Second, cellular milieus are
complex mixtures of ions, metabolites, and osmolytes57,58. The high
concentrations of potassium (~150mM) are balanced by anions that
include the amino acid glutamate, glutathione, and organic
phosphates58,59. The relevant anions inside cells are glutamate and
other organic phosphates, whereas the intracellular concentrations of
chloride are very low in comparison (see Supplementary Table 1 for
information regarding glutamate)57,58.

There are important physicochemical differences between
chloride and glutamate. For chloride, the charge of the anion is loca-
lized to the chlorine atom (Fig. 2a). Its pKa is ~ –4, making it a very
strong acid or even a weak base60. In contrast, the pKa of the free
carboxylate anion of glutamate is ~4.8, making it a weak acid (Fig. 2b).
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Fig. 1 | Cluster size distributions in sub-saturated solutions for different pro-
cesses. If phase separation does not involve associative interactions and is driven
by a single energy scale, viz., macromolecular solubility defined by the intrinsic
Flory χ parameter40,53, then the cluster size distribution will be bounded, as shown
by the black dashed line. However, if specific interactions between stickers con-
tribute to associations, and chain segregation effects that define microphase
separation54 are absent, then the cluster size distribution evolves continuously,
showing a rightward shift as csat is approached – see solid lines. The ordinate
quantifies P(n), the probability density associated with realizing a cluster of n
molecules, which is the label along the abscissa. The progression from cooler to
hotter colors represent increasing protein concentration.
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The charge on the carboxylatemoiety is delocalized across the two sp2

hybridized oxygen atoms. Accordingly, the ionic potential of Cl- is
higher than the carboxylate anion, and hence chloride polarizes
cations more strongly than carboxylate anions. These details have
been shown to have a direct impact on the effective strengths of
protein-protein and protein-nucleic acid interactions in solutions with
glutamate versus chloride55,56,61–65.

Comparative assessments of the effects of glutamate and chloride
on pre-percolation clusters and phase separation of FET proteins are

also motivated by recent studies on the tetramer-forming bacterial
single-stranded DNA (ssDNA) binding protein (SSB)65,66. Kozlov et al.
showed that in glutamate, as opposed to chloride, the binding of SSBs
to ssDNA is highly cooperative, and this is true irrespective of the
number of nucleotides that are occluded by binding to SSB 66. This
high cooperativity of ssDNA binding involves the C-terminal intrinsi-
cally disordered linker (IDL) that connects the DNA binding domain to
the nine-residue C-terminal tip. The inference was that preferential
exclusion of glutamate fromprotein surfaces is a driver of associations

Fig. 2 | The csat of FUS-SNAP is similar inKCl versus KGlu buffers. a Schematic of
chloride anion showing its electron distribution in 2 s and 2p orbitals as well as its
pKa. b Schematic of glutamate. c Sample data for absorbance-based spin-down
assays. Data are shown here for FUS-SNAP in 20mM Tris.HCl pH 7.4, with 100mM
KCl and 20mM Tris.Glu pH 7.4 and 100mM KGlu at ≈ 25 °C. n = 3 independent
samples were used for themeasurements, and data are presented asmean values ±
the standard deviation (SD). d–h show bright field microscopy images collected at
the 1-h time point for solutions containing different concentrations of FUS-SNAP in
20mM Tris.HCl, pH 7.4, with a final KCl concentration of 100mM. i–m show

microscopy images collectedat the 1-h timepoint for solutions containing different
concentrations of FUS-SNAP in 20mM Tris.Glu, pH 7.4, with 100mM KGlu, and
(n–I) show microscopy images collected at the 1-h time point for solutions con-
taining different concentrations of FUS-SNAP in 20mM Tris.HCl, pH 7.4, with
100mM KCl. In both KGlu and KCl-control buffer, the residual KCl (<30mM) from
FUS-SNAP stock was added. The total concentration of KCl is marked on the (i–r).
For imaging purposes, 5% of the total mixture in each sample is made up of Alex-
aFlour 488 (AF488) labeled FUS-SNAP. The scale bar in each panel corresponds
to 10 µm.
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of disordered regions of the SSBs55. These proteins also undergo phase
separation in conditions that mimic bacterial milieus67. Kozlov et al.
showed that the driving forces for phase separation, measured in
terms of the temperature dependence of csat, was stronger in gluta-
mate when compared to chloride65. For example, at 20 °C, the mea-
sured csat of SSB (≈4 µM) in the presence of 40mM potassium
glutamate (KGlu) is three times lower than the csat of ≈15 µMmeasured
in the presence of 40mM of KCl.

In this work, we compare how clustering in sub-saturated solu-
tions is affected by glutamate versus chloride for FET proteins and
specific mutants of these proteins (see sequence details in the Sup-
plementary Data file). We use a combination of dynamic light scat-
tering, multiparameter fluorescence detection (MFD), microfluidics-
based confocal detection, and atomistic simulations to dissect the
contributions of glutamate versus chloride to the driving forces for
clustering in sub-saturated solutions and the driving forces for phase
separation. These investigations show that interactions that drive
clustering are separable from those that drive phase separation. Irre-
spective of the anion in solution, phase separation is driven by the
achievement of a common length scale for clusters that form in sub-
saturated solutions. However, the concentrations at which this length
scale is realized are different in glutamate versus chloride, thus
establishing how differences in the interplay between solvent-
mediated and sequence-specific interactions influence clustering as
opposed to phase separation.

Results
Enabling in vitro assessments of the effects of glutamate versus
chloride
The FET family proteins cannot be purified or stored in buffers con-
taining KGlu because the proteins precipitate under these conditions.
Therefore, the proteins were purified and stored in a buffer with a high
concentration of potassium chloride (KCl) (50mM Tris-HCl pH 7.4,
500mM KCl, 5% Glycerol, and 1mM DTT)52. To prepare solutions at
different protein concentrations in 100mM KCl, the stock protein
solutions were diluted and adjusted with KCl buffer. To prepare pro-
tein solutions in 100mM KGlu, the stock solution was diluted with
100mM KGlu buffer. Accordingly, these solutions contain an addi-
tional ~1mM to ~30mMKCl from the stock protein solution. To assess
the effects of the residual KCl from the stock protein solutions in KGlu
buffers, we performed controlmeasurements in conditions referred to
as “KCl-control buffer.” This includes the corresponding amount of
residual KCl from the stock protein solution and 100mM KCl.

Saturation concentrations of FUS change minimally in KGlu
versus KCl
Using an absorbance-based spin-down assay, we quantified csat values
for SNAP (Synaptosmal-Associated-Protein)-tagged FUS, designated
as FUS-SNAP. The values of csat were measured in 100mM KGlu and
100mMKCl. The spin-down assay yields an estimate of 2 µM and 3 µM
for the csat of FUS-SNAP in 100mM KGlu versus 100mM KCl, respec-
tively (Fig. 2c).

Next, we collected microscopy images ~1 h and ~4 h after sample
preparation. Results at the 1-h time point are shown in Fig. 2d–r for
different concentrations of FUS-SNAP in 100mM KCl, 100mM KGlu,
and the KCl-control buffer. In 100mM KCl or KCl-control buffer, the
formation of micron-scale condensates is detectable only at or above
~3 µM. However, in 100mM KGlu, we observed small puncta in the
concentration range of 1–2 µM. These puncta do not grow significantly
over the period of 4 h (Supplementary Fig. 1). Increasing the protein
concentration from 1 µM to 4 µM leads to the growth of micron-scale
puncta over the 4-h window. These data suggest that glutamate has a
minimal effect on the location of the phase boundary when compared
to chloride. However, glutamate appears to influence the extent of
clustering in sub-saturated solutions, which in turn leads to the

observeddifferences in kinetics for phase separation in supersaturated
solutions (see data in Fig. 2d–r and Supplementary Fig. 1).

Independent estimation of csat
We performed dynamic light scattering (DLS) measurements in solu-
tions containing different amounts of FUS-SNAP to obtain an inde-
pendent assessment of csat (Supplementary Fig. 2). DLS probes the
presence of slow modes in the temporal evolution of autocorrelation
functions, and the onset of these slow modes is a feature of super-
saturated solutions52. In 100mM KCl, the autocorrelation functions
reach a steady state below csat (<3 µM) and do not change significantly
over 26min (Fig. 2d, e). Above csat (Supplementary Fig. 2c), the auto-
correlation functions show the presence of slow modes, which are
signatures of coalescence and networking of clusters that drive phase
separation52. In KGlu, the slowmodes appear at protein concentrations
of 2 µM (Supplementary Fig. 2e), whereas in KCl they appear at 3 µM52.
These results provide independent confirmation of the estimates of
csat and emphasize the minor differences in driving forces for phase
separation of FUS-SNAP in 100mM KCl versus 100mm KGlu.

Clustering in sub-saturated solutions is enhanced in glutamate
DLS measurements show that mesoscale cluster formation of FUS-
SNAP in sub-saturated solutions is significantly enhanced in KGlu
buffer compared to KCl buffer (Supplementary Fig. 3). Since the
scattering intensity is a convolution of a linear concentration depen-
dence and an R6 dependence on the size of the scatterers (R), DLS
signals are dominated by a combination of the most abundant species
and the largest species in solution68. DLS data are shown in terms of
correlation coefficients. To facilitate interpretation of the correlation
coefficient in terms of the sizes of mesoscale clusters, we quantified
correlation coefficients for monodisperse silica nanoparticles of
known concentrations and sizes (Supplementary Fig. 4). Based on
these calibrations, we conclude that for a given bulk concentration of
FUS-SNAP, the average sizes of clusters that form in KGlu are larger
than those formed in KCl. In both buffers, the average sizes increase
with protein concentration. However, the concentration-dependence
of the growth of mesoscale clusters is more pronounced in KGlu
versus KCl.

Next, we used nanoparticle tracking analysis (NTA)69 to quantify
the concentration dependence of forming mesoscale clusters in sub-
saturated solutions (Supplementary Movie 1 and Supplementary
Movie 2). NTA provides information regarding the abundance of spe-
cies that contribute to the DLS signals.We collected NTA data for FUS-
SNAP and untagged FUS in 100mM KGlu and 100mM KCl. At
equivalent protein concentrations, the abundance of mesoscale clus-
ters is ~4-fold higher in 100mM KGlu when compared to 100mM KCl
(Fig. 3a–c and. Supplementary Fig. 5). The mesoscale clusters, which
are the largest species that can form at a given level of sub-saturation,
make up between ~0.2% and ~0.4% of the solution in 100mM KCl
(Fig. 3b). In 100mMKGlu buffer, the abundance of mesoscale clusters
goes up by a factor of 2-3 (Fig. 3b). We also used DLS to examine the
relative abundance of mesoscale clusters in different buffers by mea-
suring the derived count rate, which is the theoretical count rate one
would obtain at 100% laser power with zero attenuation. The higher
derived count rate indicates higher abundance and larger particles.
Consistent with NTA data, the derived count rate for FUS-SNAP is
3-fold higher in 100mMKGluwhen compared to 100mMKCl (Fig. 3d).
Untagged FUS shows similar behaviors (Supplementary Fig. 5g).

To assess the transferability of our findings to other members of
the FET family, we performed DLS measurements and quantified
derived count rates for FUS-EGFP (Supplementary Fig. 5h), TAF15-
SNAP (Fig. 3e) and EWSR1-SNAP (Fig. 3f). In all systems, we observe a
similar trend, where the derived count rate is higher in 100mM KGlu
when compared to 100mM KCl at each of the protein concentrations
studied. The protein concentration of TAF15-SNAP in its stock solution
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is low (~12 µM). Accordingly, with increasing protein concentrations,
the method of sample preparation leads to higher residual KCl in the
solution. Therefore, at 100mM KGlu buffer, the residual KCl sup-
presses some of the clustering, resulting in a lower differences in the
derived count rate than in 100mM KCl. Similar effects were also
observed for untagged FUS (Supplementary Fig. 5g).

Size distributions of low abundance mesoscale clusters from
analysis of DLS data
Themesoscale clusters represent 0.1–1% of all species that are present
in sub-saturated solutions. The abundance of mesoscale clusters is
higher in glutamate than in chloride, especially well below csat
(Fig. 3a–c). We used the number density of scatterers extracted from
the DLS data and quantified the distribution of hydrodynamic dia-
meters (dH) of mesoscale clusters. We used this analysis to ask and
answer a set of questions. On the manifold of mesoscale species that
are of low overall abundance, viz., the largest species that form in sub-
saturated solutions, what is the frequency of observing specific dH
values? Is there evidence for the continuous evolution of the tail in the
cluster size distribution as depicted in Fig. 1, and is this evolution
different in KCl versus KGlu? To answer these questions, we leveraged
the fact that information regarding the time correlation functions
combined with information regarding raw intensities can be used to
extract distributions of scattering intensities, which scale as the sixth
power of the hydrodynamic diameter dH. Using the Stokes-Einstein

formula, these intensity distributions can be used to estimate the
number densities of dH values. Following the approach of Cohan
et al. 70, the intensity distributions were converted to distributions of
dH values using practical implementations of Mie scattering theory68.

We extracted distributions of dH values for FUS-SNAP at different
protein concentrations. All measurements were performed in sub-
saturated solutions. We compared the distributions in 100mM KCl
versus 100mM KGlu (Fig. 4a–d) at different protein concentrations.
For three of the four protein concentrations (0.125 µM, 0.25 µM, and
0.5 µM) the size distributions in KGlu are shifted to higher values when
compared toKCl. Thedistributions in KGlu andKCl show the heavy tail
nature thatwe anticipate from theory (Fig. 1). This point becomes clear
when one accounts for the abundanceof themesoscale clusters, which
as measured using NTA shows thatmesoscale clusters make up 0.1–1%
of the solution. Interestingly, the continuous growth of mesoscale
specieswith increasedprotein concentrations plateaus inKGlu as csat is
approached. As a result, in a 1 µMprotein solution, the distributions of
dH values in KCl catch up with the distributions in KGlu. This obser-
vation helps explain the similarities of csat values that we estimated in
KCl andKGlu. It is also in linewith the theories39,71, where the entropyof
mixing becomes considerably less favorable as molecular or cluster
sizes increase—a phenomenon referred to as an entropic sink by Bra-
cha et al.72. The implication is that there exists a length scale in termsof
cluster size, which when crossed, enables the separation of the solu-
tions of FUS molecules into coexisting phases.
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Fig. 3 | Abundance of mesoscale clusters in sub-saturated solutions of FET
proteins increases inKGlu compared toKClbuffers. aNTAdata show the volume
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EWSR1-SNAP (f) in KGlu versus KCl buffers. n = 3 independent samples were used
for the measurements, and data are presented as mean values ± SD.
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Next, we converted the distribution of dH values to estimate the
cluster size distributions. We report these distributions as frequency
histograms since the mesoscale clusters are the least abundant species
in solution and normalizing the histograms to compute P(n) as in Fig. 1
would require knowledge of the full species distribution. To extract the
frequency histogram of cluster sizes, we used the fact that the dH of
monomeric FUS-SNAP is 4.6 nm (see below for a direct measurement).
Assuming a spherical approximation for the monomers, the number of
molecules n within a cluster of hydrodynamic diameter dH can be
estimated using n =p(vc/vm). Here, vc and vm are the volumes of the
cluster and monomer, respectively and p is a dimensionless packing
fraction. The upper limit on p is 0.74 for crystalline packing of mono-
mers within a cluster. If we assume random close packing of spheres,
then p =0.64. And if we assume that molecules are packed within
clusters as they would be in dense phases, where the volume fraction of
solvent is between 0.6 and 0.726–28,43,73, then we can set p =0.33.

We analyzed the distributions of cluster sizes for mesoscale
clusters formed by FUS-SNAP by assuming two different values for p
namely, 0.64 (Fig. 4d–g) and 0.33 (Fig. 4h–k). These choices ignore the
possibility that the packing fraction might depend on the cluster size.

Both choices for p paint a similar picture. The low abundance mesos-
cale clusters, which should be in the tails of the cluster size distribu-
tion, show a rightward shift toward larger numbers with increasing
protein concentration. The cluster sizes in KGlu are larger than in KCl
for three of the four concentrations. As csat is approached, the cluster
sizes stop growing in KGlu, and the cluster size distribution in KCl
becomes akin to what is observed in KGlu.

When comparing these cluster size distributions to what we
anticipate from theory (Fig. 1), it is important to remember that we are
analyzing cluster sizes on the manifold of mesoscale species whose
abundance is low, being in the range of 0.1–1%. The implication is that
the DLS data are probing the most abundant species, and the tails of
the cluster size distributions but nothing inbetween. To gobeyond the
tails and obtain information regarding the totality of size distributions,
we used multiparameter fluorescence measurements.

Detection of the full range of species that form as a function of
protein concentration
To extract the size distributions and the concentration-dependent
evolution of species distributions that are smaller than mesoscale
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Fig. 4 | Sizedistributionsof lowabundancemesoscale clusters.Weextracted the
distributions of dH values for FUS-SNAP at different protein concentrations, all of
which were in the sub-saturated regime. The top row shows the distribution of dH
values extracted in KGlu (dotted curves) and KCl (solid curves) for solutions with
protein concentrations of 0.125 µM (a), 0.25 µM (b), 0.5 µM (c), and 1 µM (d). These
distributions are shown as raw histograms, and hence the ordinate shows fre-
quencies i.e., the number of occurrences of a dH value between dH and dH +Δ,
where Δ =0.1 nm. In each panel, the abundance of species being analyzed is shown
in the legend, and these values were extracted from NTA data shown in Fig. 3b.

Rows 2 and 3 show the distributions of the number of molecules n within a cluster
of size dH. These distributions were computed by assuming that the molecules
within clusters are spheres. The packing fraction can be set to be p =0.64, for
random close packing of spheres, (e–g) or p =0.33, (h–i), assuming a packing
density concordant with reports of the volume fractions of protein versus solvent
in single protein condensates26–28. In eachpanel, the solid curve corresponds toKCl,
and the dotted curve corresponds to KGlu. The concentration of [FUS-SNAP] for
each column of plots is shown at the top.
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clusters, we used microfluidic confocal spectroscopy (MCS) to inves-
tigate the evolution of clusters of all sizes that form in sub-saturated
solutions in the presence of glutamate. MCS is a brightness-based
method that combines microfluidic mixing and flow with confocal
detection74. As with previous studies, which were performed in the
presence of 100mM KCl52, we observed a monotonic increase in the
brightness per molecule for FUS-EGFP in 100mM KGlu where EGFP
refers to enhanced green fluorescent protein. Clearly, clusters form in
sub-saturated solutions, and their average sizes increase with
increasing concentrations (Fig. 5a).

Building on the MCS measurements, we used MFD as a com-
plementarymethod that affords access to distributions of clusters that
form in the presence of glutamate versus chloride. These measure-
ments are sensitive to small and intermediate sized species, and they
provide a complement to the measurements of mesoscale clusters
extracted from DLS and NTA. We used increasing concentrations of
FUS-SNAP stained with a fixed concentration (15 nM) of Nile Red in the
presence of either 100mM KGlu or 100mM KCl. The fluorescence
intensity distributions, which were extracted using analysis of fluor-
escence bursts, showed clear and pronounced differences between
glutamate versus chloride (Fig. 5b). Additionally, in glutamate, we
observed a continuous tailing towards count rates of up to 104kHz. In
contrast, we did not observe significant populations beyond 400 kHz
for FUS-SNAP in KCl. These results suggest that clustering in sub-
saturated solutions is enhanced in KGlu versus KCl.

Fluorescence intensity distribution analysis (FIDA) provides
insights regarding the growth in brightness, and this is a useful proxy
for the sizes of protein clusters. Inferences regarding the sizes of
protein clusters can be drawn by analysis of donors and acceptors
separately (Supplementary Fig. 5). The elongated shape of the con-
tours in two-dimensional histograms (Fig. 5c) suggests the formation
of dynamic clusters of FUS molecules that rearrange on the milli-
second timescale. This is supported by clear deviations from the static
FRET (Förster resonance energy transfer) line. Assuming a simple
structural model consisting of two states, the datasets from both KCl
and KGlu buffers can be fitted with the same dynamic FRET line75. The
FRET efficiencies show similar averages in both buffers indicating that
the differences in anions do not induce detectable structural changes.
Measurements of FCS show that the autocorrelation of donor-labeled

FUS-SNAP is consistent with increased translational diffusion time td2
and strong fluctuation in the weighted residuals at correlation times
longer than td2 in the KGlu buffer (Supplementary Table 3). This points
to the presence of higher-order complexes even at 400pM con-
centrations of FUS-SNAP. These single-molecule data show clear evi-
dence for increased heterogeneity and larger cluster sizes for FUS-
SNAP in glutamate versus chloride.

FCS andNanoDSF showenhanced stabilizationof FUS clusters in
glutamate
IUPRED analysis76 predicts that isolated FUS mainly consists of dis-
ordered regions (Fig. 6a). However, given extant sequence-ensemble
characterizations of disordered proteins77, it stands to reason that
there will be conformational fluctuations that are differently impacted
by glutamate versus chloride. To investigate the influence of both
buffers on the stabilization of FUS in monomers and in clusters, we
analyzed conformations and associations of FUS-SNAP-AF488 in a
complementary approach by FCS at the single-molecule level and by
nanoscale differential scanning fluorimetry (nanoDSF) at concentra-
tions close to saturation where the signals will be dominated by larger,
non-monomeric species (Supplementary Fig. 7).

We studied single-molecule events in equilibrated solutions with
FUS-SNAP-AF488 in KGlu and KCl, respectively (Fig. 6b). By com-
paring the signal traces, we see that the bursts in KGlu are brighter
and more frequent. We computed the autocorrelation functions of
FUS-SNAP-AF488 for two intensity-based selections namely, mono-
mers and clusters. For the preferential selection of monomers, all
bright bursts above its intensity threshold were excluded. In Fig. 6c,
we show correlation curves for FUSmonomers together with the free
dye measurement of rhodamine 110 as a reference. The data for FUS
were fit using a model (see Methods) with two components for
translational diffusion namely, one global time for dye impurities and
one salt-dependent time for monomeric FUS. In the panels on the
right, we show two blow-ups of the correlation curves centered on
the respective diffusion times of FUS monomers, td,monomer, (dark
yellow) and clusters, td,cluster (pink). For FUS monomers, the corre-
lation curves in KCl and KGlu overlap, and the fitted diffusion times
are identical within error. Using the Stokes-Einstein equation, we
converted these times to an average hydrodynamic radius of 2.3 nm.

Fig. 5 | Multiparameter fluorescence measurements show continuous
concentration-dependent evolution of clusters that are different in KGlu
versus KCl. a Single-molecule analysis by microfluidic confocal spectroscopy
(MCS) shows that FUS-EGFP cluster formation increases with increasing con-
centrations from 125nM to 1000nM in KGlu buffer. b Intensity distributions from
the multiparameter fluorescence detection (MFD) experiment in the presence of
15 nM Nile red, measured at various concentrations of FUS-SNAP, show that the
abundance and sizes of clusters increase in 100mM KGlu. This is evidenced by the

tailing towards higher count rates up to 104kHzper burst compared to 100mMKCl
buffer. c Single-molecule FRET measurements with 200pM of FUS-SNAP-AF488 as
donor and FUS-SNAP-AF647 as acceptor in KGlu buffer (blue) compared to KCl
buffer (red) show that the number of FRET events are significantly higher for KGlu
(1D-histograms). The FRET populations are broadened beyond shot noise due to
intermolecular dynamics (dynamic FRET line, dashed light green), resulting in a
deviation from the static FRET line (solid black).
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reference cut (pink). These traces display the pronounced clustering behavior in
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(pink) show the resulting translational diffusion times (dashed lines), including one
global and buffer-dependent time for a 3D-Gaussian diffusion model and the
weighted residuals for the cluster cut and the monomer cut as reference. The fit to
Eq. 6a (see Methods) in (c) yields identical diffusion times within error in KCl
(tðKClÞd,mo =0.189± 0.017ms, orange) and KGlu (tðKClÞd,mo =0.201 ± 0.017ms, and blue (for
all fit results, see Supplementary Table 3). Additionally, the free dye measurement
of Rhodamine (Rh110) is given as reference (gray) in (c). The correlation curve for

the cluster cut displays in KGlu (dark blue) a clear shift to longer diffusion times in
the oligomer time windowwhen compared to KCl (red). Themonomer component
(dashed black) is adequately fitted with one diffusion time for both buffers (see
Supplementary Table 4). e The maximum entropy method (MEM) gives diffusion
time distributions (101 components) as a function of probability with one peak
between 0.09 and 0.4ms (monomer time window, green) and a second peak
between 0.8 and 4ms (oligomer time window, pink). f Corresponding L-curves,
according to ref. 79, are presented as quality validation for the obtained diffusion
timedistributionswhere the cornerpoint is indicatedbya circle.g–hNanoDSFdata
show the ratio of 350 nm/330 nm plotted against temperature for FUS-SNAP in KCl
and KGlu buffers. h The first derivative of data shown in (g) against temperature
shows the apparent unfolding temperature of FUS-SNAP at 57 °C and 53 °C in KGlu
and KCl buffers, respectively. n = 3 independent samples were used for the mea-
surements, and data are presented as mean values ± SD.
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Therefore, the distinct buffers do not change the overall size of
monomeric FUS.

In contrast to the monomer sub-population, the long diffusion
time td,cluster (Fig. 6d) of FUS clusters in KGlu differs from the value in
KCl by ~1ms (Supplementary Table 4). Furthermore, large deviations in
the weighted residuals indicate the insufficiency of a two-component
fit for FUS clusters in glutamate. Thus, we applied the Maximum
Entropy Method (MEM) as a model free approach78,79 to quantify the
diffusion time distributions for clusters (Fig. 6e). Two peaks were
obtained for both buffers. To verify the goodness of the fit and
demonstrate appropriate weighting, we display the dependence of the
reduced χ2red on the entropy (L-curve, Fig. 6f), where the chosen values
of the corner point are marked with a dot (see Methods and Supple-
mentary Fig. 6). Due to the larger fraction of clusters, a higher mini-
mum χ2red is yielded for KGlu. The first peak at td,monomer ~ 0.2ms
resembles the monomer species and they overlap for KCl and KGlu.
The second peak, which is in the millisecond time range, corresponds
to clusters. In KGlu, the peak has significantly longer times and higher
amplitudes than in KCl. From this we conclude that FUS clusters are
more abundant and larger in size in KGlu, even though there are no
detectable conformational differences at the level of FUS monomers.
Instead, glutamate enhances macromolecular associations when
compared to chloride, and this is in line with the previous reports61,66.

Glutamate is known to enhanceprotein stability56. AlthoughFUS is
intrinsically disordered, its overall dimensions and the heterogeneity
of intramolecular interactions, quantified via accessibility of different
functional groups, will be temperature dependent. Accordingly, we
investigated how buffers influence the temperature dependence of
tryptophan fluorescence of FUS-SNAP. For this, we performed
nanoDSF measurements, which helps us analyze the consequences of
thermal fluctuations in low-volume capillaries. Increasing the tem-
perature will drive increased exposure of tryptophan residues.
NanoDSF monitors the concurrent changes in tryptophan fluores-
cence at 330 and 350nm80. To increase the measurement sensitivity,
we used FUS-SNAP instead of FUS. This helps minimize the amount of
residual KCl caused by the storage buffer, and it enables improved
signal strength.

Figure 6g shows changes of the 350nm/330 nm ratio as a function
of increasing temperature in two different concentrations and buffers.
The first derivative plot (Fig. 6h) shows that the apparent unfolding
temperatures of FUS-SNAP in the KGlu and KCl buffer are 57 °C and
53 °C, respectively.We also tested the SNAP-tag alone as a control. The
apparent unfolding temperature of SNAP in the KGlu and KCl buffer is
65 °C and 69 °C, respectively (Supplementary Fig. 6). Surprisingly, in
the KGlu buffer, SNAP has lower apparent unfolding temperature than
in the KCl buffer. Therefore, the enhanced thermal stability of FUS-
SNAP in glutamate can be attributed to FUS and not to SNAP. Taken
together, the FCS and nanoDSF measurements demonstrate that glu-
tamate enhances intramolecular and intermolecular interactions
among FUS molecules when compared to KCl.

Differential anion effects probed using mutations reveal the
origins of separation of energy scales
We investigated the effects of mutations within the FUS PLCD on
clustering in sub-saturated solutions in the presence of 100mM KGlu
versus 100mM KCl buffer. Tyr-to-Ser mutations increase csat by up to
two orders of magnitude compared to wild-type FUS16. Mesoscale
clusters are undetectable using DLS in either 100mM KCl or 100mM
KGlu. However, some level of clustering is evident when 18 or 10 Tyr
residues in the PLCD are substituted to Ser in the presence of 100mM
KGlu (Fig. 7a). These results implicate Tyr residues in PLCDs as being
important for clustering and phase separation. Substitution of 24 Arg
residueswithin the RBD toGly also increases csat by up to twoorders of
magnitude compared to wild-type FUS16. These substitutions abrogate
clustering in sub-saturated solutions in both chloride and glutamate

(Fig. 7b). Taken together with the results from substitutions of 27 Tyr
to Ser in the PLCD, the substitutions of Arg to Gly in the RBD empha-
size the importance of networks of Tyr-Arg interactions as drivers of
clustering in sub-saturated solutions and of phase separation as well.

Substituting 24 Arg residues in the RBD to Lys increases csat by an
order of magnitude compared to wild-type FUS16. Strikingly, while
these substitutions weaken clustering in the presence of 100mM KCl
(Fig. 7c), the extent of clusteringweobserve in thepresenceof 100mM
KGlu is akin to that of wild-type FUS (compare Fig. 7c to Supplemen-
tary Fig. 5g). As shown in recent single-molecule studies, there is a
uniform weakening of cation-π interactions in chloride salts81. In con-
trast, in glutamate, the differences betweenwild-type FUS and the 24R-
K variant seem to be length-scale dependent. Specifically, while clus-
tering is preserved upon substituting Arg to Lys, phase separation,
which should be governed mainly by solubility, is weakened by Arg to
Ly substitutions. This can be rationalized if the strengths of cation-π
interactions are minimally affected by glutamate compared to chlor-
ide. However, the increase in csat points to differences in solubility
driven by substitutions of Arg to Lys. Indeed, it is noteworthy that the
free energies of solvation of Arg and Lys are fundamentally different
fromone another82, and Arg hasmore of a hydrophobic character than
Lys82. As a result, the driving forces for phase separation, which are
governed by solubility limits, are affected by substitutions of Arg to
Lys, whereas clustering in sub-saturated solutions is not affected,
especially in glutamate.

The importance of multivalent interactions on clustering in sub-
saturated solutions is also underscored by the effects of substitutions
of Tyr or Phe residues within the RBD to Ser or Gly, respectively. In
both chloride and glutamate, these substitutions weaken the extent of
clustering in sub-saturated solutions (Fig. 7d). Finally, substitutions of
10 Asp and 4 Glu residues within the RBD significantly enhance clus-
tering compared to wild-type FUS, and the effects of these substitu-
tions are similar in glutamate and chloride (Fig. 7e). Note that while
clustering is weakened and its detection requires the use of 10 µM
protein for the 6F-G and 6Y-S variants (Fig. 7d), clustering is readily
apparent at 250 nM of the 10D/4E-G variant (Fig. 7e).

Clusters form reversibly in sub-saturated solutions
The average sizes of clusters in sub-saturated solutions from DLS
experiments show a decrease upon dilution and an increase with
increased concentration (Fig. 8a, b). This is true in glutamate and
chloride buffers52. Similarly, in MFD experiments (Fig. 8c), when 3μM
of Nile Red stained FUS-SNAP was diluted to 1μM, the number of
bursts decreased. Increasing the protein concentration to 2.75μMalso
increased the bursting, and upon dilution to 1.65μM, the number of
bursts decreased. For each protein concentration, the increases in
fluorescence amplitude and broadening of the fluorescence distribu-
tions become less significant at later dilution steps, indicating the
reversibility of FUS clusters. In smFRET studies, the introduction of
40 nM of unlabeled FUS-SNAP causes a shift in the FRET signal to very
low FRET between FUS-SNAP-AF488 and FUS-SNAP-AF647 (Supple-
mentary Fig. 8a). This shows that cluster formation is reversible and
that molecules within clusters are labile in glutamate and chloride52.

Clusters create distinctive local environments
Next, we used environmentally-sensitive dyes, specifically Nile red and
bis-ANS, to probe the local environments of clusters that form in dif-
ferent buffers. The quantum yields of both dyes increase in nonpolar
environments40,83,84. We measured the fluorescence lifetime distribu-
tions of Nile red using MFD in various concentrations of FUS-SNAP in
100mM KGlu and 100mM KCl. Nile Red exhibits a spectrum of life-
times ranging from 0.6 ns to 4.66 ns. It is known the lifetimes of Nile
Red increase with increased hydrophobicity85. In 100mM KCl, at
0.5μM FUS-SNAP, the peak in the fluorescence lifetime distribution
occurs at 2 ns.With increasing concentration of FUS-SNAP, the lifetime
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distribution in 100mM KCl becomes bimodal, showing peaks at 2 ns
and 4 ns. In the presence of 100mM KGlu, the Nile Red lifetime dis-
tributions show one distinct peak with an average lifetime of 4 ns,
which is reached at FUS-SNAP concentrations as low as 0.5 µM. The
inference is that there is an increase in the number and size of clusters
in KGlu compared to KCl (Fig. 9a).

To complement the analysis with Nile Red, we also used bis-ANS to
probe the local environments within clusters that form in the presence
of 100mM KGlu versus 100mM KCl (Fig. 9b, c). In both cases, in the
presence of 2μM bis-ANS, the fluorescence intensity increases with
increasing protein concentration. The increase in intensity is higher in
the presence of KGlu compared to KCl. As a control, when we increased
the KCl concentration to 200mM, it caused a decrease in the fluores-
cence intensity of bis-ANS with FUS-SNAP compared to 100mM KCl
buffer (Fig. 9d). This suggests that KCl inhibits the clustering of FUS-
SNAP. To assess the apparent hydrophobicity of the clusters, the fluor-
escence intensity of the same concentration of bis-ANSwasmeasured in
methanol and ethanol (Supplementary Fig. 8b). The intensity of bis-ANS
in the presence of FUS-SNAP clusters in KGlu buffer is comparable to
that of bis-ANS in methanol. These findings suggest that clustering in
sub-saturated solutions is enhanced in KGlu when compared to KCl.
Stronger molecular associations increase the extent of clustering, as
probed via the sizes of clusters, and the larger clusters are apparently
more hydrophobic when compared to the surrounding solvent.

Glutamate is preferentially excluded from sites on amino acids
To uncover the molecular basis for differences in cluster formation in
KGlu versus KCl, we studied the interactions of the two salts with
different amino acids using molecular dynamics (MD) simulations.
These simulations use capped amino acids and explicit representa-
tions of solvent molecules and solution ions (see Methods). The
simulation results were used to compute preferential interaction
coefficients for the two salts for different amino acids (Glycine, Lysine,
Arginine, Serine, Aspartic acid, Phenylalanine, Tyrosine, and
Glutamine).

Preferential interaction coefficients quantify the excess numbers
of cosolutes in the vicinity of the peptide when compared to the bulk
solution. Using the local-bulk partitioning formalism86 adapted for
analysis of MD simulations87 (Fig. 10a), preferential interaction coeffi-
cients were calculated using Γion rð Þ=Nion rð Þ � NH2O

rð Þð Nion,bulk
NH2O

,
bulk

Þ. Here,
Nion rð Þ and NH2O

rð Þ quantify the numbers of ions and water molecules
at a distance r from the center-of-mass of the peptide, whereasNion,bulk

and NH2O
,
bulk

quantify the numbers of ions and water molecules in the
bulk solution. The simulations show that, except for positively charged
residues, the preferential interaction coefficients are lower for gluta-
mate than chloride (Fig. 10b). This implies that glutamate is pre-
ferentially excluded from peptide sites. Preferential exclusion of
glutamate will contribute to the increased association of macro-
molecules. For Arg and Lys, the anions localize around the amino acids
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to neutralize the charge. As a result, we do not observe substantial
differences in preferential interaction coefficients of glutamate versus
chloride around Arg and Lys, respectively.

Next, we computed preferential interaction coefficients for the
whole salts using Γsalt = 0:5 Γanion + Γcation � Zj j� �

, where Γanion and Γcation
are the preferential interaction coefficients for the anion and cation
respectively, and Z is the net charge of the peptide (Fig. 10c). As with
the values of Γanion, wefind that thepreferential interactioncoefficients
are smaller for KGlu when compared to KCl. This is true for all non-
cationic amino acids. Radial distribution functions between the solu-
tion anions and different moieties on different peptides (Supplemen-
tary Figs. 9–12) show that the differences between glutamate and
chloride originate from the differences in accumulation versus exclu-
sion of anions around atoms of backbone and sidechain groups.

Preferential exclusion of glutamate enhances
associations of FUS
We quantified the concentration of monomeric FUS-EGFP using a
single photon counting confocal detection unit connected to a
microfluidic flow cell. This enables the recording of intensity time

traces of clusters characterized by short bursts in intensity stemming
from species passing through the confocal volume as well as the for-
mation of a stable baseline intensity corresponding to the FUS-EGFP
dilute phase concentration (Fig. 10d). Information regarding mono-
meric species can be extracted from themaximum intensity histogram
as the dilute phase volume fraction far exceeds that of the dense phase
(Fig. 10e). These measurements were performed for different KGlu
concentrations at two different concentrations of FUS-EGFP to record
how the concentrations of monomeric species change with glutamate
concentrations (Fig. 10f). The background KCl concentration was kept
constant at 40mM. The concentrations of monomeric FUS-EGFP
decreases upon increasing KGlu. The lowering of the concentration of
monomeric FUS-EGFP is a signature of enhanced associations driven
by preferential exclusion of glutamate from protein sites.

Discussion
In the mean-field formalism of Flory32 and Huggins33, the solubility
parameter χ is proportional to the algebraic difference between the
effective protein-solvent interactions and the arithmetic mean of
protein-protein and protein-solvent interactions5. For associative
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macromolecules, Tanaka introduced the concept of a renormalized χ
to account for the effects of specific intermolecular associations, and
the interplay with solvent-specific interactions36. The renormalized χ
depends on macromolecular concentrations and it combines the
contributions of specific sticker-stickers interactions, their mediation
by solvent, and the effects of the interplay between solubility-
determining macromolecule-solvent interactions and solvent-solvent
interactions. In glutamate, our data show that associations of FET
proteins are strengthened on the nanoscale. However, these do not
translate to significant changes in csat. The implication is that for FET
proteins, the renormalized χ is similar in chloride versus glutamate.
This suggests that the enhancement of protein-protein interactions on
nanoscales is counterbalanced by length-scale-dependent changes to
macromolecule-solvent interactions and/or weakened solvent-solvent
interactions in glutamate versus chloride. This would explain why
cluster formation in sub-saturated solutions is enhanced, but csat
changes only minimally.

Our findings regarding the relative insensitivity of csat to gluta-
mate versus chloride differ from those of Kozlov et al. for bacterial
SSBs65, although even there csat changes only by a factor 3-4. This
suggests that the interplay of solvent-mediated specific associations
and solubility-determining interactions are not generic across differ-
ent systems. Instead, they are sequence- and architecture-specific.
While FET proteins are flexible, linear associative polymers, the SSBs
are protein-based exemplars of branched “hairy colloids”88,89. Taken
together with the results of ref. 65, our work highlights the need for

comparing the effects of glutamate and other cellular metabolites on
clustering and phase separation of different multivalent proteins
defined by different sequence grammars and architectures.

Our comparative assessments of chloride versus glutamate were
motivated by the fact that the latter is an exemplar of the types of
anions that are present in cells. Yet, it is often assumed that phy-
siologically relevant salt conditions correspond to 100–150mM KCl
or NaCl90–94. This assumption does not square with extant data for
prokaryotic58 or eukaryotic systems. For example, in the cytoplasms
of glutamatergic neurons, the concentration of glutamate is in the
5–10mM range95. In synaptic vesicles, glutamate concentrations can
be as high as 100mM96. Formulations for a “single-assay medium”

intended to mimic the in vivo milieu of Saccharomyces cerevisiae
include 300mMK+, 245mM glutamate, 50mM phosphate, 20mM
Na+, 2mM free Mg2+, all at a pH of 6.859. Importantly, the mimicking
medium does not include chloride. Therefore, RNA-binding proteins
are unlikely to encounter chloride inside cells. Instead, glutamate or
other metabolites including phosphates are likely to be the key
anions, thus highlighting the biological relevance of findings repor-
ted in this work.

We used MD simulations to quantify preferential interaction
coefficients for KCl and KGlu around amino acids with different side-
chain chemistries. In line with the proposals of Record and
coworkers55,56,64,65, our simulations show that glutamate is pre-
ferentially excluded from backbone and sidechain amides, as well as
other functional groups. However, there are key differences in the
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atomic-level details that emerge from our simulations versus inter-
pretations proposed by Record and colleagues55,56,64,65.

Cheng et al. used vapor pressure osmometry (VPO) to measure
the solubilities of model compounds in aqueous solvents with differ-
ent types of solutes55. In their notation, water, the primary component
is labeled 1, the model compound of interest is component 2, and the
solute of interest, such as KGlu or KCl, is compound 3. The change in
solubility, as gleaned from VPO measurements, leads to inferences
regarding the sign andmagnitude of the chemical potential µ23 for the
preferential interaction of the model compound with the solute. A
positive sign indicates preferential exclusion, whereas a negative sign
implies preferential interactions. The measured µ23 values for fifteen
different model compounds were decomposed using a global regres-
sion analysis based on a linear superposition model55. This model is
written as µ23 =∑αiAi. Here, the summation is over atoms of functional
groups in the model compounds and Ai is the solvent-accessible sur-
face area of atom iwithin themodel compounds. The values ofAiwere
computed using a specific probe radius and specific structures for
eachmodel compound. Based on the inferred values ofαi, interactions
of glutamate are proposed to be favorable for sp2 nitrogen atoms and
the nitrogen atoms of cationic residues. The converse was found to be
true for chloride. Radial distribution functions from our simulations
suggest that chloride interacts favorablywith sp2 nitrogen atomswhen
compared to glutamate (Supplementary Figs. 9–12). For sp2 oxygen
and backbone carbon atoms, ref. 55, inferred weaker interactions with

chloride when compared to glutamate, and our simulation results
show similar trends (Supplementary Figs. 9–12).

Inferences from simulations were derived via a detailed account-
ing of the interplay of amino-acid, water, and solute interactions.
Conversely, the VPO measurements data report one number for each
model compound, and these are then dissected using an accessible
surface area-based model combined with global regression analysis.
The use of accessible surface area as a measure of solvation is pro-
blematic for small molecules and atomic-level dissections. Accessible
surface area becomes auseful proxyonly at large length scales97,98. This
is because the concept of an interfacial tension does not apply on the
atomic and molecular length scales. Instead, theory and simulation
suggest that the hydration thermodynamics and forces require the
inclusion of a volume term and dispersion interactions on atomic and
molecular scales99. These are fully present in our simulations. Addi-
tionally, solvent-accessible surface areas are insensitive to changes in
conformation and the local concentrations of functional groups for
linear, flexible systems100. Hence, while the use of solvent-accessible
surface area is widely prevalent in the protein folding literature, and
has been justifiedby elegant connections toKirkwood-Buff integrals101,
their use for dissecting atomic-level interactions of disordered pro-
teins is problematic. The preferential interaction coefficients we
computed were directly gleaned from pair distribution functions, in
accord with the Kirkwood-Buff formalism102. At this juncture, we lean
on consistencies of interpretations from the work of ref. 55, and the
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simulations. Both studies suggest that the central differences between
chloride and glutamate derive from the latter being preferentially
excluded from protein sites.

Overall, our work highlights how components of cellular milieus
contribute to amplifying the distinct contributions from pre-
percolation clusters and phase separation, respectively5. Our results
imply that even if the endogenous levels of FET proteins are below csat,
we should expect these and other proteins like them to form hetero-
geneous distributions of clusters in cellular milieus. The abundance of
clusters and the size distributions of clusters will be governed by the
expression levels in cells. These clusters, which are different from
micron-scale condensates, may be of direct functional relevance
in vivo54,103–106.

Methods
Protein purification
All proteins were expressed in SF9 insect cells cultured at 27 °C in sus-
pension in glass culture flasks in ESF921 serum-free medium. Baculo-
virus for expression of target genes under the control of the polyhedrin
promoter was generated using the FlexiBAC system107. In a typical
experiment, 1 L SF9 insect cells at a density of 1million cells permLwere
infectedwith 5mL P2 virus and harvested 72h post-infection. Cells were
centrifuged at 300RCF for 15min at 4 °C. The pellet was resuspended in
30mL ice-cold lysis buffer (50mM Tris.HCl pH 7.4, 1M KCl, and 5%
Glycerol) supplemented with EDTA-free Protease Inhibitor Cocktail
Tablets (1 tablet/ 100mL). The cells were lysed by 5min of sonication on
ice at output level 35, with 50% duty cycle. Unbroken cells and debris
were removed by centrifugation at 39,800 RCF for 30min at 4 °C. All
subsequent steps of the purification were performed at room tem-
perature. The supernatant was passed over a pre-packed 5ml Ni-NTA
agarose column (Protino, Macherey-Nagel) using a peristaltic pump.
The column was washed with 10 column volumes (CV) of lysis buffer
supplemented with 10mM imidazole. The target protein was eluted
with 5 CV NTA elution buffers (50mM Tris.HCl pH 7.4, 1M KCl, 5%
Glycerol, and 300mM Imidazole). Pooled peak fractions were incu-
bated with 10ml amylose resin for 10min, and the column was subse-
quently drained by gravity flow. The resin was washed with 10 CV lysis
buffer, and the target protein was eluted with 5 CV MBP elution buffer
(50mM Tris.HCl pH 7.4, 1M KCl, 5% Glycerol, and 30mM Maltose).
Protein concentration was continuously monitored using a Bradford
assay, and the purity of each fraction was assessed by SDS-PAGE.

To cleave off the N-terminal His-MBP tag, 3C precision protease
was added to the eluted protein at a 1:100molar ratio. Themixturewas
incubated at room temperature for 4 hrs and subsequently submitted
to size-exclusion chromatography using ÄKTA (GE Healthcare) with
Superdex 200 10/300 increase column equilibrated with storage buf-
fer (50mMTris.HCl pH 7.4, 500mM KCl, 5% Glycerol, and 1mM DTT).
C-terminal SNAP-tagged protein peak fractions were pooled, con-
centrated, and used for the experiments.

To obtain untagged protein, TEV protease was added at a 1:50
molar ratio and incubated at room temperature for 6 h. The untagged
protein was purified using gel filtration chromatography (ÄKTA with
Superdex-200 increase 10/300 column) and equilibrated with storage
buffer. Peak fractions were pooled and concentrated using a 30kDa
molecular weight cut-off (MWCO) at 3000 RCF at room temperature.
Protein concentration was determined using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific). The 260/280 ratio of all pur-
ified proteins wasmeasured to be between 0.52 to 0.56. Peak fractions
were pooled and used immediately for the DLS or NTA experiments.

SNAP-tagged proteins were snap-frozen in liquid nitrogen and
stored at −80 °C. Immediately prior to experiments, frozen proteins
were thawed, and the tag was cleaved by TEV digestion and sub-
sequent size-exclusion chromatography. Peak fractions were pooled,
concentrated, and used for the experiments. This protocol allows for
data reproducibility.

Determination of saturation concentrations
We prepared the samples at the indicated protein concentration in
100mM KCl and KGlu buffers, and 30min after sample preparation,
the samples were spun down at 20,000 RCF on a benchtop centrifuge
unit and measured the concentration in the clarified supernatant by
using a Bradford assay108.

Microscopy measurements of phase separation
For droplet formation assays, proteins were diluted into various con-
centrations in the corresponding 100mM KCl buffer, 100mM KGlu
buffer, and KCl-control buffers in a total solution volume of 30 μL. The
samples were added into the 384-well non-binding microplates (Grei-
ner bio-one). The images were taken after various time points, starting
from 1 h to 4 h. Imageswere taken using an IX71/IX81 inverted Spinning
Disc Microscope with an Andor Neo sCMOS/Andor Clara CCD camera
and a UPlanSApo 60x oil-immersion objective (Olympus).

Reproducibility
Three independent microscopy measurements (n = 3) were per-
formed. For each condition and time point, ten different micrographs
were acquired from various parts of the same sample well. The
represented micrograph data displays a similar outcome to that of
several micrographs.

DLS Measurements
DLS measurements were performed using the Zetasizer Nano ZSP
Malvern instrument (measurement range of 0.4 nm to 10 µm). The
Nano ZSP instrument incorporates noninvasive backscattering
technology. This enables the measurement of time-dependent fluc-
tuations of the intensity of scattered light as scatterers undergo
Brownianmotion. The analysis of these intensity fluctuations enables
the determination of the diffusion coefficients of particles, which are
converted into a size distribution using the Stokes-Einstein
equation109. A 632.8 nm laser illuminated the sample solutions, and
the intensity of light scattered at an angle of 173° wasmeasured using
a photodiode.

In DLS, the autocorrelation function of the scattered light is used
to extract the size distributionof thedissolvedparticles. Thefirstorder
electric field correlation function of laser light scattered by a mono-
modal or monodisperse population ofmacromolecules can be written
as a single exponential shown in Eq. (1):

G τð Þ= 1 +b exp �2Dtq
2τ

� �
; ð1Þ

Here, b is a constant that is determined by the optics and geometry of
the instrument, Dt is the translational diffusion coefficient of the par-
ticles, and τ is the characteristic decay time. The scattering vector q is
given by Eq. (2):

q
�� ��= 4πn0

λ0
sin

θ
2

� �
; ð2Þ

Here, n0 is the refractive index of the solvent, λ0 is the wavelength, and
θ is the scattering angle. For populations composed of a single type of
scatterer, the distribution function of decay rates can be derived from
a simple fit of the experimental estimates of the logarithm of the
correlation function in Eq. 1 to a polynomial. These methods, which
apply tomonomodal distributions of sizes of scatterers, canbe used to
extract the translational diffusion coefficient, from which one can
estimate the hydrodynamic radius Rh of the scatterers. For this, one
uses the Stokes-Einstein relation in Eq. (3):

Dt =
kBT

6πηRh

� �
; ð3Þ

Article https://doi.org/10.1038/s41467-024-48775-3

Nature Communications |         (2024) 15:4408 14



Here, kB is the Boltzmann constant (1.381 × 10−23 J/K) and η is the
absolute (or dynamic) viscosity of the solvent. In thiswork,we used the
hydrodynamic diameter dh (i.e., dh = 2Rh) as the preferred way to
quantify particle sizes.

For the measurements, all solutions were filtered using 0.2 μm
membranes (Millex®‐GS units) purchased from Millipore™. All experi-
ments were conducted with the following settings on the Malvern
instrument: Material—protein; Dispersant—buffers; Mark-Houwnik
parameters; Temperature: 25 °C with equilibration time—120 s, Mea-
surement angle: 173 °. Each spectrum represents the average of
12 scans each of 10 s in duration. All proteins were freshly purified and
used after chromatography purificationwith a standard stock solution
buffer. The samples were prepared by adding freshly prepared stock
proteins followed by dilution buffer and mixed thoroughly by pipet-
ting four to six times. The samples were equilibrated for 2min at 25 °C,
and the data were recorded in 2-min intervals.

Nanoparticle tracking analysis (NTA)
NTA was performed using NS300 from Malvern instruments (mea-
surement range of 20 nm to 1 µm). The system was accompanied by a
NanoSight syringe pump to inject the samples for the experiments.
NTA measurements utilize the properties of light scattering and
Brownian motion to quantify the size distributions and concentra-
tions of particles in liquid suspension. A laser beam (488 nm) was
passed through the sample chamber, and the particles in suspension
were visualized using a 20x magnification microscope. The video file
of particles moving under Brownian motion was captured using a
camera mounted on the microscope that operates at 30 frames
per second. The software tracks particles individually and uses the
Stokes-Einstein equation to resolve particles based on their hydro-
dynamic diameters.

All proteins were freshly purified and used after chromatographic
purification with a standard stock solution buffer. All buffers were
filtered through a 0.22μm polyvinylidene fluoride membrane filter
(Merck, Germany). All protein stock solutions were centrifuged at
20,000RCF for 5min at room temperature beforemeasurements. The
samples were prepared by adding freshly prepared, centrifuged stock
proteins followed by dilution buffer and mixed thoroughly by pipet-
ting 4–6 times. The samples were equilibrated for 2min at 25 °C, and
the data were recorded 6min after sample preparation and
equilibration.

Multiparameter fluorescence detection (MFD) measurements
and analysis
Confocal point measurements. All confocal point measurements
were conducted on a confocal fluorescence microscope (Olympus
IX71, Hamburg, Germany) using a supercontinuum laser (SuperK
Extreme with SuperK VARIA tunable filter, NKT Photonics, Birkerød,
Denmark) at 514 nm± 1.5 nm and 39MHz. Laser light was directed into
a 60x water immersion objective (NA = 1.2) by a dichroic beam splitter
and focused into the sample close to the diffraction limit volume. The
emitted light was collected by the same objective and separated into
twopolarizations (parallel andperpendicular) relative to the excitation
beam. The fluorescence signal was further divided into two spectral
ranges by beam splitters (BS 560, AHF, Tübingen, Germany). Addi-
tionally, Bandpass filters for Nile Red fluorescence (HC 607/70) were
placed in front of the detectors. The signals from single photon
counting detectors (SPCM-AQRH-14 TR Excelitas, Wiesbaden, Ger-
many) were recorded photon-by-photon with picosecond accuracy
(HydraHarp400, PicoQuant, Berlin, Germany) and analyzed using
custom software (LabVIEW based, see https://www.mpc.hhu.de/
software/mfd-fcs-and-mfis). The temperature in the laboratory dur-
ing all titration steps was 20 ± 1 °C.

FUS-SNAP or untagged FUS was titrated into 15 nM Nile Red
solution at standard buffer conditions (20mM Tris.HCl, pH 7.6) with

either 100mM KCl or 100mM KGlu. The KGlu buffer contains 10mM
residual KCl from the FUS stock solution. Both dye and salt con-
centrations are kept constant during the titration and back-dilution
using the respective Nile Red-containing buffer solutions.

Burst analysis. Using in-house LabVIEW based software, bursts were
selected via an intensity threshold using 2σ criteria out of the mean
background with a photonminimum number of 10 photons per burst.
The decays for each burst were then processed and fitted using a
mono-exponential model yielding fluorescence-weighted average
lifetime considering correction factors for background signal, polar-
ization (g-factor), and scattering effects. Especially for FUS titrations in
the nM to µM regime, an additional photon maximum of 3000 was
applied due to computational limitations.

Fluorescence intensity distribution analysis (FIDA). We performed
FIDA for all experiments according to established protocols110.

Single-molecule FRET (smFRET) measurements. smFRET experi-
ments were conducted using a confocal epi-illuminated setup based
on an Olympus IX71 microscope deploying pulsed interleaved exci-
tation (PIE) where the donor and acceptor fluorophore are sequen-
tially excited by fast alternating laser pulses thus allowing the
computation of the stoichiometry S (donor-acceptor-ratio). Excita-
tion is attained using 485 nm (50μW) and 640 nm (10 µW) pulsed
diode lasers (LDH-D-C 485 and LDH-P-C-635B, PicoQuant Berlin,
Germany) operated at 32MHz and focused by a 60×/1.2 NA water
immersion objective (UPLAPO 60x, Olympus, Hamburg, Germany)
into the sample. We used the excitation beam splitter FF500/646
(Semrock, USA), a polarizing beam splitter cube (VISHT11, Gsänger),
and dichroic detection beam splitters (595 LPXR, AHF, Tübingen,
Germany) to separate fluorescence from laser excitation and split it
into its parallel and perpendicular spectral components. The four
detection channels, corresponding to color and polarization, were
split further by 50/50 beam splitters to obtain dead time-free species
cross-correlation curves, yielding a total of eight fluorescence
detection channels (green channels: τ-SPAD-100, PicoQuant; red
channels: SPCM-AQR-14, Excelitas, Wiesbaden, Germany). To block
out Raman scattering, green (HQ 530/43 nm for FUS-SNAP-Alexa488)
and red (HQ 720/150 nm for FUS-SNAP-Alexa647) bandpass filters
(AHF, Germany) were put in front of the corresponding detectors.
The detector outputs were recorded by a TCSPC module (Hydra-
Harp400, PicoQuant). Measurement times for single-molecule
detection (SMD) experiments were about 10 h each.

The equations for the static and dynamic FRET lines, including the
weighted lifetimes for both species, the correction parameters, and all
2D-FRET efficiency plots, are shown in Eqs. (4) and (5):

Estatic = 1�
0:0065τ Dð ÞA

4 + �0:0927τ Dð ÞA
3

� �
+0:4244τ Dð ÞA

2 +0:3738τ Dð ÞA � 0:0215

3:9000
ð4Þ

Edynamic = 1�
1:70003:7000

3:9000 ð1:7000+3:7000� ð1:3337τ Dð ÞA � 1:2360ÞÞ ð5Þ

Fluorescence correlation spectroscopy (FCS) curve fitting. Donor
autocorrelation curves of FUS-SNAP-AF488 in smFRET measure-
ments were fitted for correlation times tc from 10−4 to 102ms using
a 3D-Gaussian model with two diffusion terms for two selections:
(i) monomer cut: td,dye, translational diffusion time of free dye
impurities, which are global for the three data sets of the buffers
as well as the reference, free Rhodamine 110, and td,mo, transla-
tional diffusion time of the monomer components are shown in
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Eqs. (6a) and (6b):
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(ii) cluster cut: td,mo, translational diffusion time of the monomer
component, which are global for both data sets of the buffers, and td,cl,
average translational diffusion time of the cluster components:

GðtcÞ=G0

+
1
N
� Rf

�� ��
1 + tc
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The descriptions of all other parameters in Equation 6 a and b and
the fit results are compiled Supplementary Table 2 and Supplementary
Table 3.

Using the translational diffusion times of the single-molecule FUS
measurements together with the Rhodamine 110 reference
(Dref = 4.3E6 cm2/s) a translational diffusion coefficient for both buffers
is calculated as in Eq. (7):

Dbuf f er =
Dref � td1,global

td2,buf f er
ð7Þ

The hydrodynamic radius Rh is computed by the Stokes-Einstein
equation at a temperature T = 293.15 K as in Eq. (8).

Rh,buf f er =
kT

6πηDbuf f er
ð8Þ

Maximum entropy method (MEM)78. The fitting model above (eq.6)
assumes two distinct diffusion times. We have used a MEM to inves-
tigate whether more complicated distribution times of diffusion times
better fit the experimental data. The diffusional factor of a correlation
(Gd) was presented as theweighted sumof diffusional terms for a fixed
set of diffusion times td,i as in Eq. (9):

Gd tc
� �

=
PN

i= 1piGd tc; td,i
� �

,

Gd tc; td,i
� �

= 1
1 + tc

tdi

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 + tc

z0
ω0

� �2

�tdi

Þ
s ð9Þ

The vector of weighting factors p= ðp1, . . . ,pNÞ minimizing the
regularized functional shown in Eq. (10)

Q pð Þ= χ2 pð Þ � νS pð Þ, ð10Þ

was found by the method of a quadratic programming following
ref. 79. In Eq. (10) the term χ2 pð Þ is the least-squares goodness-of-fit
functional expressed in the quadratic form shown in Eq. (11):

χ2 pð Þ= χ20 +q � p +p �H � p, ð11Þ

Here, the vector q andmatrixH are defined by experimental data. The
factor S pð Þ in the second term is the Kullback-Leibler relative entropy
shown in Eq. (12). Here, the prior distribution is m= ðm1, . . . ,mNÞ:

S pð Þ= �
X

i
piln

pi

mi

� �� �
ð12Þ

We used a uniform priori m. The factor ν is the regularization
parameter chosen suchway that the optimized vector of amplitudes p
provide maximum entropy S pð Þ for reasonably low values of the
goodness-of-fit parameter S pð Þ. The low value of ν leads to a solution
(low entropy) with multiple separated sharp peaks, sometimes false
ones. The increasing of regularization makes solution smother
(increase entropy). The lowest value of an entropy (zero) is achieved
for uniform pi in accordance with our choice ofm.

Microfluidic confocal spectroscopy (MCS). Microfluidic devices111,
were first fabricated as SU-8 molds (MicroChem) through standard
photolithographic processes and then produced as poly-
dimethylsiloxane (PDMS) slabs, which were bonded onto thin glass
coverslips112. The devices were operated by placing gel-loading tips
filled with buffer and protein samples in their corresponding inlet
ports and pulling solution through the devices in withdraw mode at a
flow rate of 150 µL/h using automated syringe pumps (neMESYS,
Cetoni).

The FUS-EGFP was stored in 20mM Tris.HCl pH 7.4, 500mM KCl
wasdilutedwith buffersof 20mMTris.Glu to the indicatedprotein and
KGlu concentrations as stated. During the experiment, the sample was
placed into the sample inlet of the device, and the corresponding
buffer contained the same concentration of KGlu in the buffer inlet.
The co-flowing buffer was supplemented with 0.05% Tween-20 to
prevent surface sticking of the protein to PDMS and glass surfaces.

Experiments were conducted by scanning the confocal spot of a
custom-built confocal microscope through the central four channels
of the microfluidic device52. Briefly, the setup is equipped with a 488-
nm laser line (Cobolt 06-MLD) for excitation of EGFP fluorophores and
a single-photon counting avalanche photodiode (SPCM-14, Perki-
nElmer) for subsequent detection of emitted fluorescence photons.
Further details of the optical unit have been described previously.
During the scanning of the device, 200 evenly spaced locations within
the central four channels of the devicewere surveyed and detected for
4 s. Clusters were classified as peaks that exceeded 5 standard devia-
tions above themean fluorescence intensity of each trace. Thesepeaks
were quantified according to location against the mean signal of each
trace. The average number of clusters �nclusters was then quantified by
averaging each of the four groups of peaks corresponding to the four
central channels. This was used in the calculation of cluster con-
centration according to the following equation:

Ftotal =
�nclusters

t

� �
4hdstep

πzw

� �
; ð12Þ

Here, t is the time each trace was collected for (4 s), h is the height of
the microfluidic channel (28μm), dstep is the width of each step (5.64
μm), and z andwwere the height andwidth of the confocal spot (3μm
and 0.4μm, respectively). From Eq. (12), which yields the flux of clus-
tersFtotal, the concentrationof clusters could bedetermined according
to Eq. (13), with Qsample being the flow rate of the sample (15μL/h) and
NA being the Avogadro constant74:

ccluster =
Ftotal

NAQsample

 !
; ð13Þ

Nano differential scanning fluorimetry (nanoDSF). Thermal unfold-
ing of FUS-SNAP was performed using nanoDSF with a Prometheus
NT.48 (NanoTemper Technologies, München, Germany) instrument.
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Protein samples were prepared in buffers and centrifuged shortly
(5 min, 10,000 RCF) to remove protein aggregates. Samples were
loaded into high-sensitivity glass capillaries (Cat#PR-C006,
NanoTemper Technologies, München, Germany) and exposed at a
linear thermal ramp from 20 °C to 95 °C by thermal ramping rate
of 1 °C/min. Intrinsic protein fluorescence emission was collected
at 330 and 350 nm with a dual-UV detector over a temperature
gradient. The fluorescence intensity ratio (350/330) was plotted
against the temperature, and the inflection point of the transition
was derived from the maximum of the first derivative for each
measurement using Therm-Control Software (NanoTemper
Technologies, München, Germany). All experiments were carried
out in triplicate; mean and standard deviation were calculated for
all three measurements.

Measurements of bis-ANS fluorescence. Different concentrations
of FUS-SNAP protein were mixed with 2 μM bis-ANS solution in
100mM KCl and KGlu buffers. Then, the solutions were mixed and
loaded 100 µL in a 96-well plate (microplate, PS, half area, µClear,
Med. binding, Black, Greiner Bio-one). The spectra were recorded
from 425 nm to 650 nm (10 nm bandwidth) with the TECAN plate
reader using an excitationwavelength of 355 ± 5 nm. For control, we
usedonly2μMbis-ANSwiththesamebufferconditions,ethanol,and
methanol.

Molecular dynamics (MD) simulations. We used the Charmm36113

forcefield to perform MD simulations using the GROMACS 2021
package114,115. Simulations were performed with explicit representa-
tions of solvent molecules using the TIP3P116 water model. The simu-
lation setup was as follows: we used capped amino acids of the form
Ace-Xaa-Nme, where Ace refers to N-acetyl, Nme refers to N′-methy-
lamide, and Xaa is the residue of interest, which is one of Gly, Asp, Glu,
Arg, Lys, or Gln. Then, we solvated the peptide by using the default
“scale” factor of 0.57 in a cubic simulation box with box size
7 × 7 × 7nm3. Ions were added to the simulation box by replacing water
molecules to neutralize the charge on amino acid (if any) and to obtain
the salt concentration of 500mg /mL. On average, we included 11,007
watermolecules for the simulationswhereKCl isused and 10,333water
molecules for simulations with KGlu.

We performed energy minimization using steepest descent
followed by 100 ns equilibration at 298 K and 1 bar. We then per-
formed additional simulations, each 400 ns long to obtain produc-
tion runs which were later used to obtain radial distribution
functions and preferential interaction coefficients. Periodic
boundary conditions were employed in all three directions. The
V-rescale thermostat117 was used to maintain the temperature at
298 K with a coupling time constant of 0.1 ps. The pressure was
maintained by using the Parinello-Rahman118 method with a time
constant of 2.0 ps. Long-range electrostatic interactions were han-
dled using the smooth Particle-mesh Ewald (SPME) algorithm119. We
used the cutoff for short-ranged Lennard-Jones potential to be
1.1 nm while the cutoff for the short-ranged electrostatic potential
was 1.2 nm. The LINCS algorithm120 was used to constrain covalent
bonds involving hydrogen atoms.

Calculation of preferential interaction coefficients. These coeffi-
cients are measures of the amount of cosolute in the local domain of
the peptide compared to the solvent87. We determined the number of
ions (Nions rð Þ) and the number of water molecules (NH2O

rð Þ) as a func-
tion of distance r from the center of mass of the peptide, by
using distance bins of size 0.2 Å. We then found the ratio of bulk
density of ions to water molecules by calculating the ratio
Nion,bulk
NH2O

,
bulk

= Nion r ≥ 2:5nm and r ≤ 3:38nmð Þ
NH2O

r ≥ 2:5nm and r ≤ 3:38nmð Þ We used 400ns of production runs
across 4 replicates to obtain preferential interaction coefficients as a
function of distance r from the center of mass of the peptide.

Data availability
Source data are provided as a Source Data file via the GitHub reposi-
tory of the Pappu lab (https://github.com/Pappulab/Glutamate_vs_
Chloride_Clustering/). TheMDsimulations data generated in this study
have been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.10593297. Source data is also available
from the corresponding author upon request.

Code availability
All custom-made code for the analyses can be found on the GitHub
repository of the Pappu lab (https://github.com/Pappulab/Glutamate_
vs_Chloride_Clustering/). MD simulations were performed using the
GROMACS 2021 package121, https://manual.gromacs.org/2021/
index.html.
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